배치학습1 [핸즈온 머신러닝 정리] 1장. 배치 학습과 온라인 학습 앞 포스팅에서 머신러닝을 지도 학습, 비지도 학습, 강화 학습으로 나누어 보았다. 이는 '학습하는 동안의 감독 형태나 정보량'을 기준으로 분류한 것이다. 한편, 머신러닝은 '입력 데이터의 스트림(stream)으로부터 점진적으로 학습할 수 있는가?'에 따라 학습 방법을 크게 3가지로 나뉜다. 배치 학습(Batch Learning) 온라인 학습(Online Learning) 배치 학습 배치 학습에서는 시스템이 점진적으로 학습할 수 없으며, 가용한 데이터를 모두 사용해 훈련시켜야 한다. 먼저 시스템을 훈련시키고 그런 다음 제품 시스템에 적용하면 더 이상의 학습 없이 실행되게 때문에 학습한 것을 단지 적용만 하게 된다. 일반적으로 이 방식은 시간과 자원을 많이 소모하므로 보통 오프라인에서 수행한다. 그래서 '오.. 2021. 6. 26. 이전 1 다음